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Abstract  

On the basis of postulates laid down in two previous papers, it is shown that, if a com- 
pound system, i.e. a system consisting of several simple systems separated from one 
another by adiabatic partitions, has greater entropy (in the wide sense) in the state x' 
than in the state x, then the system is capable of undergoing an adiabatic transition from 
the state x to the state x'. 

1. Introduction 

In an earlier paper (Boyting, 1972), hereafter referred to as I, it was pointed 
out  that the converse of  the entropy principle (or principle of increase of  
entropy) does not  in general hold for systems with non-uniform temperature,  
i.e. their entropies need not be empirical entropies (Buchdahl & Greve, 1962; 
Boyling, 1968). This means that,  i f  such a system has a pair o f  states x and y ,  
of  wh ichy  has the greater entropy (in the wide sense), then it does not auto- 
matically follow that the system can pass adiabatically from the state x to the 
state y. An example was given o f  a pair of  states x a n d y  of  a system consisting 
of  two identical closed calorimeters adiabatically separated from each other, 
such that  no adiabatic transition was possible either from x to y or from y to 
x. These two states had equal entropy,  since one could be obtained from the 
other by  interchanging the states o f  the two component  calorimeters. 

We shall now show that this sort of  behaviour is in a sense atypical, since 
the converse of  the entropy principle does hold for a very wide class of  systems 
with non-uniform temperature,  namely for compound systems, i.e. systems 
consisting of  several simple systems (Carath~odory, 1909) separated from one 
another by adiabatic partit ions. 

This is perhaps not altogether surprising, since the example cited above is a 
rather artificial one. The system has no mechanical degrees o f  freedom, since 
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the calorimeters each have constant volume. A more realistic system can be 
obtained by replacing the two closed calorimeters by two identical cylinders 
of gas fitted with pistons. Let x and y be states of the individual cylinders such 
that T(y) > T(x), where T denotes the absolute temperature. Consider 
the state z = (x,y)  of the composite system in which the first cylinder is in 
the state x and the second in the statey,  and the state z' = (y, x) obtained from 
z by reversing the roles of the two cylinders. I f  the pistons on the two cylinders 
were immovable, then, as in the case of the two closed calorimeters, there 
would be no way of passing adiabatically from the state z to the state z'. 
However, if we imagine that the two pistons may be moved freely and without 
friction, then the system can undergo a quasi-static adiabatic transition from 
the state z to the state z' (or from z' to z). 

To see how this comes about, we introduce states x '  and y '  of the individual 
cylinders defined as follows: x '  is the point of intersection of the isothermal 
through x and the adiabatic th roughy ;y '  is the point of intersection of the iso- 
thermal through y and the adiabatic through x. Suppose the system is initially 
in the state z, so that the first cylinder is in the state x and the second in the 
state y. Then we can change its state adiabatically to z' in three stages. First 
we compress the first cylinder adiabatically until it reaches the state y' ,  when 
its temperature will be equal to that of the second cylinder (which has been 
left in its original state y).  Next we allow the two cylinders to exchange heat 
by temporarily removing the thermal insulation between them. By simulta- 
neously expanding one cylinder and contracting the other at suitable rates, we 
can make the whole system pass adiabatically and isothermally at temperature 
T(y) = T(y') to a state in which the first cylinder is in the statey and the 
second cylinder in the state y ' .  Finally, we replace the thermal insulation and 
expand the second cylinder adiabatically until it reaches the state x, leaving 
the first cylinder in the state y. 

The mode of passing adiabatically from the state z to the state z' in this 
simple example suggests a line of  attack for the general problem of proving the 
converse of the entropy principle for an arbitrary compound system, to which 
we now turn. The axiomatic basis for our proof will be the set of  postulates laid 
down in I, supplemented by assumptions (i) and (ii) of a subsequent paper 
(Boyling, 1973), hereafter referred to as II. The definitions and notations of 
I and II will be used throughout without further explanation. 

The first step in the proof of the converse of the entropy principle for 
the product M = liiMi of the simple systems M i is taken in Section 2, where 
it is shown that the isentropics (i.e. level surfaces of entropy) of the system 
M are connected. In Section 3 the converse of the entropy principle is shown 
to be equivalent to a certain local result, which is then proved with the aid of  
Carnot engines, whose existence was established in II. 

2. The Conneetedness of  the Isentropics 

Let L be any isentr9Pic o fM = llin= 1M i, where the Mi are all simple. Then 
L has an equation of the form S(x) = constant, where the entropy S of M is 
defined in terms of the entropies Si of the M i by 

S(x:m,  x 2 , .  . ., x n )  = S l ( x l )  + S 2 ( x 2 )  + "  " • + S n ( x n )  
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Since each S i is a C ~ function with everywhere non-vanishing differential, it 
is clear that the function S on M also enjoys these properties, so that L is a 
closed C ~ submanifold (without boundary) of  M of  codimension 1. In 
particular, L is local!y path-connected (see, for example, Spanier, 1966). It is 
therefore connected if and only if it is path-connected, i.e. if and only i f x C x '  
for any x and x '  in L, where x C x '  means that there exists a path 3' inL 
joining x to x', i.e. a continuous function 3' : [0, 1] ~ L  such that 3'(0) = x  
and 7( t )  =x ' .  Clearly Cis  an equivalence relation on the points of  L. To 
prove that L is connected, we must show that C has only one equivalence 
class. 

Let x = (x  1 . . . . .  Xn) and x '  = (x '  1 . . . . .  Xn) be any two points of  L,  so that 
S ( x )  = S ( x ' ) ,  i.e. NiS i (x i )  = '2iSi(x~). We must prove that xCx ' .  Let Ji be the 
closed interval with end-points S i (x i )  and Si(x~). Since the differential dSi of 
the C ~ function Si on M i is nowhere zero, it follows that, for any number s 
in Ji,  there exists an open rectangular (I) coordinate neighbourhood Vi in Mi 
on which Si  is one of  the (C ~') local coordinates, such that s ~ S i (V i ) .  As s 
varies o v e r  Ji, the corresponding open intervals Si(Vi) form an open covering 
of  the compact metric space Ji, Let 6i be a Lebesgue number (see, for example, 
Hilton & Wylie, 1960, Lemma 1.8.2) for this open covering, and let N be any 
integer greater than every one of  the n quantities 6 [ l l S i ( x ~ )  - S i ( x i )  I. Then, 
i f J i  is divided into N equal closed subintervals, each of  these will be contained 
in an open interval of  the form S i (V i )  , where V i is an open rectangular coordinate 
neighbourhood o f M  i on which Si is one of  the (C =) local coordinates. Let 
Vik be the neighbourhood corresponding to the kth subinterval o f  Ji,  where 
the counting of  subintervals begins at the end-point Si(xi) o f J  i. Then, for 
each i and k, we can find a pair of  points x}, k _ 1 and x ik  in Vik such that 

Si(xi ,  k.- 1) = N + S i (x i )  + S i (x i )  

, 

Si (Xik) = S i (xi)  + -~ S i (x i )  

Defining Xio = x i  and XiN = x i ,  we see that 

E s i (x~)  : ~ si(x;k) -- Y Si(xi) = Z Si (x3  
i i i i 

for k = 0, 1 . . . .  , N, so that the states ~k = (xlx, x2k, - •., Xnk) and 
! t t t 

~k = ( x  lk , x2k' , • • . ,  XnX ) of  Mbelong to L for aUk. Since Si(xik  ) = Si(Xik ) for 
all i and the isentropics o f  a simple system are (path-) connected, it is clear that 
~kC~ f o r k  = 0, 1 . . . . .  N. Also ~ ' k - l C ~ k  f o r k  = 1, 2 , . . . , N .  For x~,k_l and 
x ik  are both in Vik.  As Vix is an open rectangular coordinate neighbourhood 
on which Si is one of the (C •) local coordinates, we may construct a C • path 
7i : [0, 1 ] ~ Vix such that Vi (0)  = x;, k -  b 7 i (1)  = xik, 

si~3"~(t)) = (1 - t )s i (x; ,k_ l) + ts~(xik) 
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(e.g. the path represented in terms of  the local coordinates on Vie by the 
straight line segment joining the points representing x} .k - t  and xik) .  Clearly 
7 : [0, 1] -*M defined by 7 (0  = (71(0,  7 2 ( 0  . . . . .  7n(t)) is a (C =) path inL 
joining ~ _  1 to ~k-Successive application of  the results ~k C ~  and ~k- i  C~c 
for various values of  k now shows that ~oC~;v, i.e. that xCx ' .  

3. P r o o f  o f  the Converse o f  the En t ropy  Principle 

We first observe that it is sufficient to prove that x ~<x' whenever x and x '  
tie on the same isentropic o f  M. For suppose that this result holds. Let 
x = ( x l  . . . . .  xn )  and x' = (x'l . . . .  , Xn) be any two states o f  M satisfying 
S(x)  < S (x ' ) ,  i.e. ~iSi(xi)  ~ EiSi(xti). Then we can find states x}' o f M  i such 
that St(x}') <. Si(x~) for all i and Y.iSi(x}') = £ iS i (x i ) .  For the range Si(Mi) of  
the function S i is an open interval (ai, bi), where a i may take the value _oo 
(and b i may take the value + o~). If  the a i are all finite, then we choose x~' such 
that 

s i ( x ; )  = - J + t - - -  - -  I as 

x z# 
I 

I f a i  = _oo for some i, then we choose the corresponding x~' such that 
t t  t t ?? ! Si(x i  ) = S i ( x i )  + S ( x )  - S ( y  ), and take x i = x i for ]  @ i. The result we have 

" " " " " " -. ,  Xn) satisfies x -~ x . On the assumed now lmphes that the state x = (x 1, • • " ' ' ~< " 
other hand x" ~< x ' ,  since x i  --~ x i  for each i. Hence x ~< x '  by transitivity. 

Next we note that, as the isentropics of M are connected, it will be sufficient 
to prove the following localised version of  the above result: 

There exists an open covering "F-ofM such that x <~ x '  whenever x and x '  
lie on the same isentropic and are both contained in a single set v of  1/'. 

For suppose that this local result holds. Let x and x '  be any two states of  M 
belonging to the same isentropic L. Then, as the sets V N L for V e ~/" form an 
open covering for the connected topological space L,  there exists (see, for 
example, Hocking and Young, 1961, Theorem 3-4) a finite sequence of  sets 
Vk in ~ and points x k in L such that 

x E V 1 ,  x ' E V N ,  X k E V k O V k + I  f o r k =  1,2 . . . .  , N - 1  

By the local result assumed above, we have 

X ~ X  1 ~ X  2 ~ ' "  " ~ X  N - I ~ X '  
whence x ~<x' by transitivity. 

The remainder of  this section will be devoted to proving the above local 
result. In fact we shall show that this result holds if the open covering ~/r 
consists of  all topological products of  the form V =II i  Vi, where V/is a non- 
empty open set in M i of the form T~ -I T*(Wi)  A S [  1 (Ji) for some thermo- 
meter Ni ,  where T i is the absolute temperature forMs, T* and S* are the 
absolute temperature and entropy for Ni ,  Wi is a standard neighbourhood (I) 
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for Ni, and Ji is some translate of  the open interval S*(Wi). We must prove 
that, for any such V, x ~< x '  whenever S(x) = S(x ')  and x and x '  both belong 
to V. 

t 
Suppose x = (x 1 . . . . .  xn) and x'  = (x'l . . . .  , Xn). The definition of  V i in 

terms of  the thermometer Ni ensures that we can find states Yi, Y;,Y] ofNi 
in W i such that 

T*(Yi) = Ti(xi), rff(y~.) = Ti*(y~' ) = Ti(x~) 

s T ( y i )  * " * ' = Si (Yi) = Si (_vi) + z~Si 
where 

A S  i = S i ( x~ )  - S i ( x i )  

Now xi ~ Yi and x~ ~ y  ~, so (xi, Yi) and (x'i, y~) may both be regarded as 
states o f  the sum M i + N i. Since these two states have the same entropy and 
Mi + ~¢~" is a simple system, it follows that (xi, Yi) <~ ~(x},y}) for Mi + Ni and 
therefore also f o r M / x  N i (cf. assumption (ii) of  II). 

We now introduce for each i a Carnot engine Ci capable of  executing a 
Camot cycle between the temperature T i ( x )  and some fixed temperature To 
less than all of  the Ti(xi'), the entropy difference between the two adiabatics 
of  the cycle being precisely ASi. The existence of  such Carnot engines is 
guaranteed by the results of  II. We shall assume that the Carnot cycle of  Ci 
proceeds as follows: 

isothermal at temperature  T i(x~) 

heat  Ti(x~) 2xS i lost 
adiabatic adiabatic 

isothermal at temperature  To 
zi4 < - -  z i3 

heat  To zSS i absorbed 

(with an obvious change of  wording in the event that AS i is negative). The 
Carnot engine Ci is a product of  thermometers, and only one of  these, that 
called the head in II, changes state in the transition from zil to zi2. Since the 

t ¢t 
entropies o f  the states O'i, zil)  and (Yi, zi2) o fNi  x Ci are equal, the same 
applies to the corresponding states of  the product o f N  i and the head of  Ci, 
states in which these two systems both have temperature Ti(x'i). Arguing as in 
the proof  of  (xi, Yi) <~ (x}, YI') above, we now deduce that 0'}, Zil) <~ (YY, zi2) 
for N i x  6"/. The same sort of  argument shows that the states z 3 = (z13, zz3 . . . . .  Zn3 ) 
and z 4 = (z14, z24 . . . .  , zn4 ) of  C = l]iC / satisfy z 3 ~< z4, since they have the 
same entropy and only one component  o f  each Ci, that called the foot in II, 
changes state in the transition from z 3 to z 4, and that isothermally at tem- 
perature T O (cf. the similar argument in Section 3 of  II). 

Combining the above results, writing I I iN  i = N, and using an obvious nota- 
tion for states of  product systems, we see that the system M x N x C satisfies 

( x , y , z l ) ~ ( x ' , y ' , z l ) < ~ ( x ' , y " , z 2 ) < . ( x ' , Y ,  Z3) 

~-~ ( x ' , Y , Z 4 )  ~ ( x ' , y ,  Z l )  

Appealing to assumption (i) of  II, we now conclude that x ~<x'. 
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4. Conclusion 

We have shown that, as far as compound systems are concerned, S(x) 
S(x') is not  only a necessary but also a sufficient condition for the existence 
of  an adiabatic transition from the state x to the state x' ,  i.e. x ~< x '  if and only 
if S(x) <~S(x'), so that S is an empirical entropy. In particular, this means that, 
given any pair of  states x and x '  of  a compound system, then one or other (or 
both) of  the relations x <~ x', x'  <~ x must hold. This was only assumed to be 
the case for simple systems in I. We have nowproved from the postulates 
that it is also true for compound systems. I f  attention were confined to 
(simple and) compound systems, it would therefore be legitimate to postulate 
this property for all systems (cf. Cooper, 1967). The approach used in I has the 
advantage that it is more economical and applies to a wider class o f  systems. 

The above results should not lead one to suppose that the entropy plays 
exactly the same role for compound as for simple systems. The heat form of  
a simple system has an integrating factor (namely the reciprocal of  the absolute 
temperature) converting it to the differential of  the entropy. A quasi-static 
transition represented by a smooth curve is adiabatic if and only if its tangent 
vector is everywhere annihilated by the hea t form, or, equivalently, if arid 
only if the entropy is constant along it. However, the heat form of  a compound 
system has in general no integrating factor. Moreover, the annihilation by the 
heat form of  all of  its tangent vectors is not a sufficient condition for a 
smooth curve to represent a quasi-static adiabatic transition of a compound 
system. Again not every smooth curve on which the entropy is constant 
represents a quasi-static adiabatic transition of  such a system. Admittedly, 
since the entropy is an empirical entropy, it is true that every state on the 
curve can be reached from every other state on the curve by an adiabatic 
transition of  some sort. However, even if this adiabatic transition is quasi- 
static, it need not follow the original curve between the two states. 

References 

Boyling, J. B. (1968). Communications in MathematicalPhysics, 10, 52. 
Boyling, J. B. (1972). Proceedings of the Royal Society (London), A329, 35. 
Boyling, J. B. (1973). International Journal of Theoretical PhYsics, 7, 291. 
Buchdahl, H. A. and Greve, W. (1962). Zeitschrift flit Physik, 168,386. 
Carath~odory, C. (1909). Mathematische Annalen, 67,355. 
Cooper, J. L. B. (1967). Journal of Mathematical Analysis and Applications, 17, 172. 
Hilton, P. J. and Wylie, S. (1960). Homology Theory. Cambridge University Press. 
Hocking, J. G. and Young, G. S. (1961). Topology. Addison-Wesley, Reading, Mass. 
Spanier, E. H. (1966). Algebraic Topology. McGraw-Hill, New York. 


